
May, 2002 

Advisor Answers 

Changing a form's class 

VFP 7.0/6.0/5.0/3.0 

Q: Based on a tip I read in FoxPro Advisor, I want to add some code to 
the Init method of each form in my application. I created a Form class 

with this code, which was easy. Then, I tried to change the class 
library of each form in my application to point to               this new 

class to become based on it, but this wasn't allowed.  

To update all the forms to base them on my template class, it seems 

like I would have to recreate every form. This can't be right. Is there a 
way I can automate the introduction of form classes into older 

projects?  

–Frank Fallon (via Advisor.COM) 

A: Most of us have been in the situation of having a form or control 
that's based on the wrong class, whether that's a VFP base class or 

another class that's just not the right one in the current situation. 

Fortunately, this is a case where FoxPro's open architecture makes a 
solution possible, even easy. 

The key issue is that VFP forms and classes (as well as reports, labels, 
and projects) are stored in ordinary tables that use special extensions. 

A VFP form consists of an .SCX/.SCT pair, where the .SCX is really a 
.DBF and the .SCT is really an .FPT. A class library has a .VCX/.VCT 

pair, with the same division: the .VCX is a .DBF and the .VCT is an 
.FPT. 

We can open a form or class as a table and modify the data stored 
there. For your problem, there are three relevant fields: Class, 

ClassLoc and BaseClass. There's one record in a form that describes 
the form itself. That's the one you want to change and it has "form" in 

the BaseClass field. The Class field contains the name of the class and 
the ClassLoc field lists the class library containing that class. So, to 

change the class a form is based on, you'd use code something like 

this: 

USE MyForm.SCX 
REPLACE Class WITH "myformclass", ; 
        ClassLoc WITH "myclasslib.vcx" ; 



   FOR UPPER(BaseClass) = "FORM" 

ClassLoc should provide a relative path to the class library, if it's on 
the same drive. The example assumes that the class library is in the 

same directory as the form. Suppose you have a directory for the 
project with a Forms subdirectory and a Libs subdirectory. In that 

case, you'd put something like "..\libs\myclasslib.vcx" in the ClassLoc 
field. (Either way, use all lowercase; VFP doesn't like upper case 

there.) 

So far, so good. But this still leaves you with the problem of changing 

every single form. You don't have to recreate them, but you do have 
to open each one and make this change. However, you don't have to 

do it manually. 

The best solution depends on what version of VFP you're using. In all 

versions, you can open the project file (.PJX) as a table, and find the 

forms. Look for records with the Type field equal to "K". The Name 
field provides the file name. Once you have the Name, you can open 

that table and make the change. 

However, in VFP 6 and later, there's a better answer. In those 

versions, open projects can be addressed programmatically. There's an 
object model that makes it easy to address and work with individual 

files. 

The Project object has a Files collection, with one entry (reference to a 

File object) for each file in the project. The File object has Name and 
Type properties that let us find and address each form.  

This code goes through the active project and changes the class of 
each form. It assumes that the name and class library (including path) 

of the new class are stored in variables cClass and cClassLib. The only 
tricky issue here is ensuring that the class library has a relative path, 

but the SYS(2014) function makes short work of that problem. 

oProject = _VFP.ActiveProject 
FOR EACH oFile IN oProject.Files 
   WITH oFile 
      IF .Type = "K"  && It's a form 
         USE (.Name) 
         cAdjustedClassLib = SYS(2014, cClassLib, ; 
                                 ADDBS(JUSTPATH(.Name))) 
         REPLACE Class WITH cClass, ; 
                 ClassLoc WITH cAdjustedClassLib ; 
            FOR UPPER(BaseClass) = "FORM" 
         USE 
      ENDIF 



   ENDWITH 
ENDFOR 

Now you can automate changing every form in a project to use a 

particular form class. Of course, in reality, you might not want to have 
every form use the same class. There are various ways you can solve 

that problem. Perhaps you only want to change those forms that are 
based on VFP's Form baseclass. In that case, modify the REPLACE 

command to affect only forms whose ClassLoc field is empty: 

REPLACE Class WITH cClass, ; 
        ClassLoc WITH cAdjustedClassLib ; 
   FOR UPPER(BaseClass) = "FORM" AND ; 
       EMPTY(ClassLoc) 

Or maybe you need to change from one form class to another. Again, 
modify the FOR clause of the REPLACE to affect only the right forms. 

You can use the same strategy to change the class of controls, as well. 
Just be careful that you only change the records you mean to change. 

As always, when you're hacking like this, make a copy of your project 
and form files before you start. 

–Tamar 


